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Abstract 

For hardware implementations, the various FFT processors available are mainly classified into memory-based and pipeline 
architecture. A pipelined FFT/IFFT processor is efficiently implemented in this paper. The pipelined FFT is viewed as the 
leading architecture for real time applications. The design adopts a single-path delay feedback style as the proposed hardware 
architecture, since the single delay feedback (SDF) pipeline FFT is good in its requiring less memory space (about N-1 delay 
elements) and its easy multiplication computation and the ease of design of control unit. Thus a pipelined FFT architecture 
accounts for both low power consumption and high speed of operation. To eliminate the read-only memories (ROM’s) used to 
store the twiddle factors, the proposed architecture applies a reconfigurable complex multiplier and bit-parallel multipliers to 
achieve a ROM-less FFT/IFFT processor, thus consuming lower power than the existing works. This proposed architecture is 
suited for the power-of-2 radix style of FFT/IFFT processors. 
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1. Introduction 

Many digital signal processing (DSP) algorithms handle 
data on a frame basis. As the stream enters the DSP system, 
sets of data samples are taken together and an algorithm is 
computed on them. The Discrete Fourier Transform (DFT) 
and the Fast Fourier Transform (FFT) algorithms are usually 
the first step in this kind of processing. Both of them, 
transform frames of a signal into Fourier’s domain and the 
resulting coefficients are then analyzed or processed 
depending on a particular application.  

 
The better execution time of the FFT over the classical DFT 
algorithm places it as the standard selection for high 
performance signal processing applications. The relevance of 
this mathematical method impulsed the development of 
special purpose VLSI systems to compute it and many 
different approaches were followed looking forward to 
maximize the speed of operation, minimize area or minimize 
power consumption. Fast Fourier Transforms (FFT) is the fast 
implementation of the Discrete Fourier Transform (DFT) 
which relies on mathematical simplification and classification 
of the input sequence to achieve their performance gain. The 
fast Fourier transform (FFT) was proposed by Cooley and 
Turkey [1] to efficiently reduce the time complexity to O 
(Nlog 2N) operations in comparison to the straight forward 
DFT that requires O(N2) operations, where N denotes the FFT 
size. 

 

The main problem domain for FFT processors includes 
achieving high throughput, low power operation and less area. 
For hardware implementation, various FFT processors have 
been proposed [2]-[15]. These implementations can be mainly 
classified into memory-based and pipeline architecture styles.  

 
Memory-based architecture is widely adopted to design an 
FFT processor. This deign style is usually composed of a main 
PE and several memory units, thus the hardware cost and the 
power consumption are both lower than the other architecture 
style. However, this kind of architecture style has long 
latency, low throughput, and cannot be parallelized. On the 
other hand, the pipeline architecture style can get rid off the 
disadvantages of the foregoing style, at the cost of an 
acceptable hardware overhead 

 
More over the FFT computation often needs to multiply input 
signals with different twiddle factors for an outcome, which 
results in higher hardware cost because a large size of ROM is 
needed to store the wanted twiddle factors.  

 
The main research idea of this work is how to optimize the 
architecture of the available pipelined FFT processor. The 
chief objective is the reduction in power. By using new 
algorithms or architectures, it is even possible to achieve both 
power reduction and achieve high speed of operation, which is 
strength of high-level optimization. The organization of this 
paper is carried out in 4 sections. The next Section (II) deals  
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about the FFT algorithm. Section III describes the proposed 
design and FFT architecture used, the Section IV describes the 
simulation result for the various PE (Processing Element) used 
in the FFT architecture followed by the 64 point FFT 
processor simulation result.  

 
The paper is structured as follows. In section 2 FFT 
algorithms are discussed. Section 3 Proposed systems.  In 
section 4 simulation and result. Section 5 deals with the 
conclusions.  

 
2.  FFT Algorithm 
 

The FFT algorithm is derived from the DFT (Discrete Fourier 
Transform) expression: 
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where k=0…(N-1) and WN = e -j2п/N 
 

Dividing recursively the input or output sequence (time or 
frequency decimation) and taking advantage of the periodicity 
and symmetry of the complex exponential factors (“twiddle 
factors”) the number of complex multiplications is reduced. 
For this illustration, N is chosen to be a power of 2, that is, N 
= 2m, where m is a positive integer. The length N is therefore 
an even number, and x(n) can be separated into two sequences 
of length N/2, where one consists of the even members of x 
and a second consists of the odd members. Splitting Eq. 1 into 
even-indexed and odd-indexed summations gives, 
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If 2m is substituted for n in the even-indexed summation and 
2m + 1 is substituted for n in the odd-indexed summation 
(with m = 0, 1, . . . , N/2 − 1), the result is, 
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X(k)=DFTN/2{xeven(m),k) + Wn
k DFTN/2{xodd(m),k}   (4) 

FFT algorithms are based on the fundamental principle of 
decomposing the computation of discrete Fourier transform of 
a sequence of length N into successively smaller discrete 
Fourier transforms. There are basically two classes of FFT  

 

algorithms. They are decimation-in-time and decimation-in-
frequency.  

Table  1.  Comparison of DFT and FFT Efficiencies 

 
The radix-2 decimation-in-frequency is obtained by the 

following steps: 
 

1) Decomposing X(k) such that it is split into FFT of 
points 0 to N/2-1 and points N/2 to N-1 
 

2) Then decimating X(k) into even and odd numbered       
             Samples  
 

3) Derivation performed in class 
 

Radix-2 Decimation-in-frequency (DIF) algorithm: 
• In radix-2, the "butterfly" element takes in 2 inputs 

and produces 2 outputs 
• Butterfly implements 2-point FFT Computations: 
• (N/2)log2N complex multiplications 
• Nlog2N complex additions 

 
In decimation-in-time, the sequence for which we need the 
DFT is successively divided into smaller sequences and the 
DFTs of these subsequences are combined in a certain pattern 
to obtain the required DFT of the entire sequence. In 
decimation-in-frequency approach, the frequency samples of 
the DFT are decomposed into smaller and smaller 
subsequences in a similar manner. Generally, FFT analyzes an 
input signal sequence by using decimation-in-frequency (DIF) 
or decimation-in-time (DIT) decomposition to construct an 
efficiently computational signal-flow graph (SFG). 

3. Proposed Design  

Generally, there are two popular hardware architectures to 
implement FFT algorithm for real-time applications. One is 
pipelined-based design and the other is memory-based design. 
The pipeline-based architecture is highly regular which can be 
easily scaled and parameterized in hardware design. The 
memory-based design be easily scaled and parameterized in 
hardware design.  

Transform 
Length (N) 

DFT 
Operations 

FFT 
Operations 

DFT Ops/FFT 
Ops 

16 256 64 4 

128 16,400 896 18 

1024 1.05*10^6 10,240 102 

32,768 1.07*10^9 4.92*10^5 2185 

1,048,576 1.10*10^12 2.10*10^7 52,429 
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Memory-based FFT processor architecture is single PE 
architecture. They are designed to increase the utilization rate 
of butterfly PE and reduce the redundancy of multiple 
butterfly PEs. The characteristic of this architecture is that it 
only uses one radix-r butterfly PE to compute all butterflies. 

Pipelined FFT Hardware Architecture: 

The Pipeline FFTs can be further classified in two groups: 

1) Feed forward structures (Commutator) 
2) Feedback structures 

 
These 2 groups can also be categorized according to radix: 

• Radix-2 structures 
• Radix-4 structures 

 
The key to pipeline FFTs is the utilization factor (i.e. want all 
computations elements to be active as much as possible). High 
utilization factor means that higher pipeline FFT efficiency is 
possible.The pipeline-based architecture is the best choice for 
high throughput applications. Due to its regular structure and 
relatively simple control, it is the best choice to implement 
high-speed long size FFT.  

Several pipelined architecture have been developed, such as 
Multi-path Delay Commutator (MDC), Single Path Delay 
Feedback (SDF) and Single Path Delay Commutator (SDC). 
SDF architecture can implement various FFT algorithms like 
radix-2, radix-4, radix-8 and other split radix. In the R2SDF 
structure, log2 2N-2multipliers, 2log2N adders and N-1 shift 
registers are needed [13]-[14] . The output data order 
form this structure is bit-reversed. 

ROM-Less FFT/IFFT Processor: 

The architecture described uses a reconfigurable complex 
constant multiplier and bit-parallel complex multipliers is 
used instead of using ROM’s to store twiddle factors, which is 
suited for the power-of-2 radix style of FFT/IFFT processors. 
The architecture described below is composed of three 
different types of processing elements (PEs), a complex 
constant multiplier, delay-line (DL) buffers (as shown by a 
rectangle with a number inside), and some extra processing 
units for computing IFFT. Here, the conjugate for extra 
processing units is easy to implement, which only takes the 
2’s complement of the imaginary part of a complex value. The 
divided-by-64 module can be substituted with a barrel shifter. 
In addition, for a complex constant multiplier, a novel 
reconfigurable complex constant multiplier is used to 
eliminate the twiddle-factor ROM. 

  Fig. 1 Pipelined FFT 

 

Fig. 2 Radix-2 64 Point FFT/IFFT Processor 

There are 3 types of processing elements used in the 
design, the functions of which correspond to each of the 
butterfly stages. The PE3 stage is used to implement a simple 
radix-2 butterfly structure only, and serves as the sub modules 
of the PE2 and PE1 stages. 

 

 

 

 

 

 

Fig. 3 Circuit Diagram of PE 3 Stage 

The figures 3, 4 and 5 explains in detail about the structure of 
the processing elements used in figure 2. In the figure 3, Iin 
and Iout are the real parts of the input and output data, 
respectively. Qin and Qout denote the imaginary parts of the 
input and output data, respectively. The DL_Iin and DL_Iout 
stand for the real parts of input and output of the DL buffers, 
and DL_Qin and DL_Qout are for the imaginary parts, 
respectively.  
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            Fig. 4 Circuit Diagram of PE 2 Stage 

 

 

 

 

 Fig. 5 Circuit Diagram of PE 1 Stage 

Bit Parallel Mulripliers: 

To replace the word length multiplier and square root 
evaluation for chip area reduction, the multiplication by 1/√2 
employs a bit parallel multiplier.  

 

 

 

Fig. 6 Circuit Diagram of Bit-Parallel Multiplication 

 

 

 

 

 

 

Fig.7 Circuit Diagram of multiplication by WNN/8 

There are several bit level parallel multipliers available 
such as, carry ripple multiplier, carry save multiplier, Baugh 
Wooley multiplier and parallel multipliers with modified 
modified Booth recoding. The modification of the proposed 
design can be done by using any of these multipliers and 
achieving low power than the existing techniques. 

Reconfigurable Complex Constant Multipliers: 

The complex multiplier uses a cascaded scheme to achieve 
low-cost hardware. Here, the meaning of two input signals 
(Iin and Iout) and two output signals (Qin and Qout) are the 
same as the signals in the PE1 stage. 

Figure 8. Reconfigurable Complex Constant Multiplier 

Figure 9. Complex Multiplier used in fig. 8 

The circuit shown in figure 9 is responsible for the 
computation of multiplication by a twiddle factor W i

64. The 
word-length multiplier used in Fig. 9 adopts a low-error fixed-
width modified Booth multiplier for hardware cost reduction 
[16]. 

4. Simulation and Synthesis Results     

The simulation of 64-point FFT was described in VHDL 
and the simulation was done in ModelSim and the code was 
functionally verified to be correct.  .  

Figure 10: PE1 Simulation Result 
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Figure 11. PE2 Stage Simulation Result 

Figure 12. PE3 Stage Simulation Result 

The simulation results of various processing elements are 
shown in the above figures 10, 11 and 12.  

Figure 13. 64-Point FFT/IFFT Simulation Result 

Synthesis Report Analysis: 

The power and area analysis were done in Synopsys DC 
(Design Compiler) and was found that for a 64 point FFT, the 
total dynamic power and area specifications were met. 

Figure 14. Schematic of 64-Point FFT/IFFT Processor 

Synthesized Power Report: 

The below shown table 2 describes the power analysis and the 
result was found that for a 64-point FFT processor. The total 
dynamic power was only 2.2876  mW and the cell leakage 
power was only 42.5143 uW. Compared with the work in 
[10], this design is about twice lower than its power 
consumption. 
 

Table  2.  Synthesized Power Report 

S.No Description Power 

1 Cell Internal Power 1.7046mW (75%) 

2 Net Switching Power 582.9717uW (25%) 

3 Total Dynamic Power 2.2876mW (100%) 
4 Cell Leakage Power 42.5143uW 

 

Figure 15. Synopsys DC Power Report 
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       Table  3.  Synthesized Area Report 

S.No Description Area 
1 Combinational area 1421 

2 Non-Combinational area 5404.5 

3 Net Interconnect area 769.82213 

4 Total cell area 6825.5 

5 Total area 7595.32213 
 

5. Conclusion 
A novel ROM-less and low-power pipeline 64-point 

FFT/IFFT processor is described in this work. Considering 
the symmetric property of twiddle factors in FFT, a 
reconfigurable complex constant multiplier is designed 
such that the size of twiddlefactor ROM is significantly 
shrunk, especially no ROM is needed. This result of 64-
point FFT processor shows that our design meets the 
power, area and timing specifications. The future work can 
be extended to higher radix 64-point processor as proposed 
and the multipliers used can be varied to obtain a low 
power FFT processor. 
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