

International Journal of Computational Intelligence and Informatics, Vol. 1 : No. 3, October - December 2011

ISSN: 2349 - 6363
 216

Analysis and Implementation of a Low Power/High Speed 64 point
pipeline FFT/IFFT Processor

P. K. Srikanth

Department of Electronics and Communication Engineering,
K. S. Rangasamy College of Technology,

Namakkal Dist., Tamilnadu-637215, India.
pksrikanth@gmail.com

C. Saranya

Department of Electronics and Communication Engineering,
K. S. Rangasamy College of Technology,

Namakkal Dist., Tamilnadu-637215, India.
saranya1209@yahoo.com

Abstract

For hardware implementations, the various FFT processors available are mainly classified into memory-based and pipeline
architecture. A pipelined FFT/IFFT processor is efficiently implemented in this paper. The pipelined FFT is viewed as the
leading architecture for real time applications. The design adopts a single-path delay feedback style as the proposed hardware
architecture, since the single delay feedback (SDF) pipeline FFT is good in its requiring less memory space (about N-1 delay
elements) and its easy multiplication computation and the ease of design of control unit. Thus a pipelined FFT architecture
accounts for both low power consumption and high speed of operation. To eliminate the read-only memories (ROM’s) used to
store the twiddle factors, the proposed architecture applies a reconfigurable complex multiplier and bit-parallel multipliers to
achieve a ROM-less FFT/IFFT processor, thus consuming lower power than the existing works. This proposed architecture is
suited for the power-of-2 radix style of FFT/IFFT processors.

Keywords: Transmission Pipeline FFT/IFFT, ROM-less FFT, Low Power FFT.

1. Introduction

Many digital signal processing (DSP) algorithms handle
data on a frame basis. As the stream enters the DSP system,
sets of data samples are taken together and an algorithm is
computed on them. The Discrete Fourier Transform (DFT)
and the Fast Fourier Transform (FFT) algorithms are usually
the first step in this kind of processing. Both of them,
transform frames of a signal into Fourier’s domain and the
resulting coefficients are then analyzed or processed
depending on a particular application.

The better execution time of the FFT over the classical DFT
algorithm places it as the standard selection for high
performance signal processing applications. The relevance of
this mathematical method impulsed the development of
special purpose VLSI systems to compute it and many
different approaches were followed looking forward to
maximize the speed of operation, minimize area or minimize
power consumption. Fast Fourier Transforms (FFT) is the fast
implementation of the Discrete Fourier Transform (DFT)
which relies on mathematical simplification and classification
of the input sequence to achieve their performance gain. The
fast Fourier transform (FFT) was proposed by Cooley and
Turkey [1] to efficiently reduce the time complexity to O
(Nlog 2N) operations in comparison to the straight forward
DFT that requires O(N2) operations, where N denotes the FFT
size.

The main problem domain for FFT processors includes
achieving high throughput, low power operation and less area.
For hardware implementation, various FFT processors have
been proposed [2]-[15]. These implementations can be mainly
classified into memory-based and pipeline architecture styles.

Memory-based architecture is widely adopted to design an
FFT processor. This deign style is usually composed of a main
PE and several memory units, thus the hardware cost and the
power consumption are both lower than the other architecture
style. However, this kind of architecture style has long
latency, low throughput, and cannot be parallelized. On the
other hand, the pipeline architecture style can get rid off the
disadvantages of the foregoing style, at the cost of an
acceptable hardware overhead

More over the FFT computation often needs to multiply input
signals with different twiddle factors for an outcome, which
results in higher hardware cost because a large size of ROM is
needed to store the wanted twiddle factors.

The main research idea of this work is how to optimize the
architecture of the available pipelined FFT processor. The
chief objective is the reduction in power. By using new
algorithms or architectures, it is even possible to achieve both
power reduction and achieve high speed of operation, which is
strength of high-level optimization. The organization of this
paper is carried out in 4 sections. The next Section (II) deals

International Journal of Computational Intelligence and Informatics, Vol. 1 : No. 3, October - December 2011

217

about the FFT algorithm. Section III describes the proposed
design and FFT architecture used, the Section IV describes the
simulation result for the various PE (Processing Element) used
in the FFT architecture followed by the 64 point FFT
processor simulation result.

The paper is structured as follows. In section 2 FFT
algorithms are discussed. Section 3 Proposed systems. In
section 4 simulation and result. Section 5 deals with the
conclusions.

2. FFT Algorithm

The FFT algorithm is derived from the DFT (Discrete Fourier
Transform) expression:

W
kn

N

N

n

nxkx ∑
−

=

=
1

0

)()((1)

where k=0…(N-1) and WN = e -j2п/N

Dividing recursively the input or output sequence (time or
frequency decimation) and taking advantage of the periodicity
and symmetry of the complex exponential factors (“twiddle
factors”) the number of complex multiplications is reduced.
For this illustration, N is chosen to be a power of 2, that is, N
= 2m, where m is a positive integer. The length N is therefore
an even number, and x(n) can be separated into two sequences
of length N/2, where one consists of the even members of x
and a second consists of the odd members. Splitting Eq. 1 into
even-indexed and odd-indexed summations gives,

∑∑
−

=

−

=

+=
1

1

2

0

)()()(
N

nk

N

N
nk

N
n

nx
n

nxkx
oddevenm

WW (2)

If 2m is substituted for n in the even-indexed summation and
2m + 1 is substituted for n in the odd-indexed summation
(with m = 0, 1, . . . , N/2 − 1), the result is,

∑ ∑
−

=

−

=

+++=
12/

0

12/

0

)12(2
)12()2()(

N

m

N

m

km

N

mk

N WW mxmxkx

= WWW
k

N

mk

N

N

m

N

m

mk

mx
N

mx)()(
212/

0

12/

0

)12(2)2(∑ ∑
−

=

−

=

++ (3)

X(k)=DFTN/2{xeven(m),k) + Wn
k DFTN/2{xodd(m),k} (4)

FFT algorithms are based on the fundamental principle of
decomposing the computation of discrete Fourier transform of
a sequence of length N into successively smaller discrete
Fourier transforms. There are basically two classes of FFT

algorithms. They are decimation-in-time and decimation-in-
frequency.

Table 1. Comparison of DFT and FFT Efficiencies

The radix-2 decimation-in-frequency is obtained by the

following steps:

1) Decomposing X(k) such that it is split into FFT of
points 0 to N/2-1 and points N/2 to N-1

2) Then decimating X(k) into even and odd numbered
 Samples

3) Derivation performed in class

Radix-2 Decimation-in-frequency (DIF) algorithm:
• In radix-2, the "butterfly" element takes in 2 inputs

and produces 2 outputs
• Butterfly implements 2-point FFT Computations:
• (N/2)log2N complex multiplications
• Nlog2N complex additions

In decimation-in-time, the sequence for which we need the
DFT is successively divided into smaller sequences and the
DFTs of these subsequences are combined in a certain pattern
to obtain the required DFT of the entire sequence. In
decimation-in-frequency approach, the frequency samples of
the DFT are decomposed into smaller and smaller
subsequences in a similar manner. Generally, FFT analyzes an
input signal sequence by using decimation-in-frequency (DIF)
or decimation-in-time (DIT) decomposition to construct an
efficiently computational signal-flow graph (SFG).

3. Proposed Design

Generally, there are two popular hardware architectures to
implement FFT algorithm for real-time applications. One is
pipelined-based design and the other is memory-based design.
The pipeline-based architecture is highly regular which can be
easily scaled and parameterized in hardware design. The
memory-based design be easily scaled and parameterized in
hardware design.

Transform
Length (N)

DFT
Operations

FFT
Operations

DFT Ops/FFT
Ops

16 256 64 4

128 16,400 896 18

1024 1.05*10^6 10,240 102

32,768 1.07*10^9 4.92*10^5 2185

1,048,576 1.10*10^12 2.10*10^7 52,429

International Journal of Computational Intelligence and Informatics, Vol. 1 : No. 3, October - December 2011

218

Memory-based FFT processor architecture is single PE
architecture. They are designed to increase the utilization rate
of butterfly PE and reduce the redundancy of multiple
butterfly PEs. The characteristic of this architecture is that it
only uses one radix-r butterfly PE to compute all butterflies.

Pipelined FFT Hardware Architecture:

The Pipeline FFTs can be further classified in two groups:

1) Feed forward structures (Commutator)
2) Feedback structures

These 2 groups can also be categorized according to radix:

• Radix-2 structures
• Radix-4 structures

The key to pipeline FFTs is the utilization factor (i.e. want all
computations elements to be active as much as possible). High
utilization factor means that higher pipeline FFT efficiency is
possible.The pipeline-based architecture is the best choice for
high throughput applications. Due to its regular structure and
relatively simple control, it is the best choice to implement
high-speed long size FFT.

Several pipelined architecture have been developed, such as
Multi-path Delay Commutator (MDC), Single Path Delay
Feedback (SDF) and Single Path Delay Commutator (SDC).
SDF architecture can implement various FFT algorithms like
radix-2, radix-4, radix-8 and other split radix. In the R2SDF
structure, log2 2N-2multipliers, 2log2N adders and N-1 shift
registers are needed [13]-[14] . The output data order
form this structure is bit-reversed.

ROM-Less FFT/IFFT Processor:

The architecture described uses a reconfigurable complex
constant multiplier and bit-parallel complex multipliers is
used instead of using ROM’s to store twiddle factors, which is
suited for the power-of-2 radix style of FFT/IFFT processors.
The architecture described below is composed of three
different types of processing elements (PEs), a complex
constant multiplier, delay-line (DL) buffers (as shown by a
rectangle with a number inside), and some extra processing
units for computing IFFT. Here, the conjugate for extra
processing units is easy to implement, which only takes the
2’s complement of the imaginary part of a complex value. The
divided-by-64 module can be substituted with a barrel shifter.
In addition, for a complex constant multiplier, a novel
reconfigurable complex constant multiplier is used to
eliminate the twiddle-factor ROM.

 Fig. 1 Pipelined FFT

Fig. 2 Radix-2 64 Point FFT/IFFT Processor

There are 3 types of processing elements used in the
design, the functions of which correspond to each of the
butterfly stages. The PE3 stage is used to implement a simple
radix-2 butterfly structure only, and serves as the sub modules
of the PE2 and PE1 stages.

Fig. 3 Circuit Diagram of PE 3 Stage

The figures 3, 4 and 5 explains in detail about the structure of
the processing elements used in figure 2. In the figure 3, Iin
and Iout are the real parts of the input and output data,
respectively. Qin and Qout denote the imaginary parts of the
input and output data, respectively. The DL_Iin and DL_Iout
stand for the real parts of input and output of the DL buffers,
and DL_Qin and DL_Qout are for the imaginary parts,
respectively.

International Journal of Computational Intelligence and Informatics, Vol. 1 : No. 3, October - December 2011

219

 Fig. 4 Circuit Diagram of PE 2 Stage

 Fig. 5 Circuit Diagram of PE 1 Stage

Bit Parallel Mulripliers:

To replace the word length multiplier and square root
evaluation for chip area reduction, the multiplication by 1/√2
employs a bit parallel multiplier.

Fig. 6 Circuit Diagram of Bit-Parallel Multiplication

Fig.7 Circuit Diagram of multiplication by WNN/8

There are several bit level parallel multipliers available
such as, carry ripple multiplier, carry save multiplier, Baugh
Wooley multiplier and parallel multipliers with modified
modified Booth recoding. The modification of the proposed
design can be done by using any of these multipliers and
achieving low power than the existing techniques.

Reconfigurable Complex Constant Multipliers:

The complex multiplier uses a cascaded scheme to achieve
low-cost hardware. Here, the meaning of two input signals
(Iin and Iout) and two output signals (Qin and Qout) are the
same as the signals in the PE1 stage.

Figure 8. Reconfigurable Complex Constant Multiplier

Figure 9. Complex Multiplier used in fig. 8

The circuit shown in figure 9 is responsible for the
computation of multiplication by a twiddle factor W i

64. The
word-length multiplier used in Fig. 9 adopts a low-error fixed-
width modified Booth multiplier for hardware cost reduction
[16].

4. Simulation and Synthesis Results

The simulation of 64-point FFT was described in VHDL
and the simulation was done in ModelSim and the code was
functionally verified to be correct. .

Figure 10: PE1 Simulation Result

International Journal of Computational Intelligence and Informatics, Vol. 1 : No. 3, October - December 2011

220

Figure 11. PE2 Stage Simulation Result

Figure 12. PE3 Stage Simulation Result

The simulation results of various processing elements are
shown in the above figures 10, 11 and 12.

Figure 13. 64-Point FFT/IFFT Simulation Result

Synthesis Report Analysis:

The power and area analysis were done in Synopsys DC
(Design Compiler) and was found that for a 64 point FFT, the
total dynamic power and area specifications were met.

Figure 14. Schematic of 64-Point FFT/IFFT Processor

Synthesized Power Report:

The below shown table 2 describes the power analysis and the
result was found that for a 64-point FFT processor. The total
dynamic power was only 2.2876 mW and the cell leakage
power was only 42.5143 uW. Compared with the work in
[10], this design is about twice lower than its power
consumption.

Table 2. Synthesized Power Report

S.No Description Power

1 Cell Internal Power 1.7046mW (75%)

2 Net Switching Power 582.9717uW (25%)

3 Total Dynamic Power 2.2876mW (100%)
4 Cell Leakage Power 42.5143uW

Figure 15. Synopsys DC Power Report

International Journal of Computational Intelligence and Informatics, Vol. 1 : No. 3, October - December 2011

221

 Table 3. Synthesized Area Report

S.No Description Area
1 Combinational area 1421

2 Non-Combinational area 5404.5

3 Net Interconnect area 769.82213

4 Total cell area 6825.5

5 Total area 7595.32213

5. Conclusion
A novel ROM-less and low-power pipeline 64-point

FFT/IFFT processor is described in this work. Considering
the symmetric property of twiddle factors in FFT, a
reconfigurable complex constant multiplier is designed
such that the size of twiddlefactor ROM is significantly
shrunk, especially no ROM is needed. This result of 64-
point FFT processor shows that our design meets the
power, area and timing specifications. The future work can
be extended to higher radix 64-point processor as proposed
and the multipliers used can be varied to obtain a low
power FFT processor.

References

[1] J. W. Cooley and J. W. Tukey, “An algorithm for the machine
calculation of complex Fourier series,” Math. Comput., vol. 19,
pp. 297-301, Apr. 1965.

[2] Koushik Maharatna, Eckhard Grass, and Ulrich Jagdhold, “A
64-Point fourier transform chip for high-speed wireless LAN
application using OFDM,” IEEE Journal of Solid-State
Circuits, vol. 39, no. 3, pp. 484- 493, Mar. 2004.

[3] Chu Yu, Yi-Ting Liao, Mao-Hsu Yen, Pao-Ann Hsiung, and
Sao-Jie Chen, “A Novel Low-Power 64-point Pipelined
FFT/IFFT Processor for OFDM Applications,” in Proc. IEEE
Int’l Conference on Consumer Electronics. Jan. 2011, pp. 452-
453.

[4] Chin-Teng Lin, Yuan-Chu Yu, and Lan-Da Van, “A low-
power 64-point FFT-IFFT design for IEEE 802.11a WLAN
application,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS),
May 2006, pp. 4523-4526

[5] Yuan Chen, Yu-Wei Lin, and Chen-Yi Lee, “A Block Scaling
FFT/IFFT Processor for WiMAX Applications,” in Proc. IEEE
Asian Solid-state Circuits Conf., 2006, pp. 203-206.

[6] Sheng-Yeng Peng, Kai-Ting Shr, Chao-Ming Chen, Yuan-Hao
Huang, “Energy-Efficient 128rv2048/1536-point FFT
Processor with Resource Block Mapping for 3GPP-LTE
system,” in Proc. 2010 International Conference on Green
Circuits and Systems (ICGCS), 2010, pp. 14-17.

[7] Minhyeok Shin and Hanho Lee, “A High-Speed Four-Parallel
Radix-24 FFT/IFFT Processor for UWB Applications,” in
Proc. IEEE Int. Symp. Circuits and Systems, 2008, pp. 960-
963.

[8] Jia Lihong, Gao Yonghong, Isoaho Jouni, and Tenhunen
Hannu, “A new VLSI-oriented FFT algorithm and
implementation,” in Proc. IEEE International on ASIC
Conference, Sept. 1998, pp. 337–341.

[9] Y.-W. Lin, H.-Y. Liu, and C.-Y. Lee, “A 1 GS/s FFT/IFFT
processor for UWB applications,” IEEE Journal of Solid-State
Circuits, vol. 40, no. 8, pp. 1726-1735, Aug. 2005.

[10] Wen-Chang Yeh and Chein-Wei Jen, “High-speed and low-
power splitradix FFT,” IEEE Transactions on Signal
Processing, vol. 51, no. 3, pp. 864- 874, Mar. 2003.

[11] Y. Jung, H. Yoon, and J. Kim, “New efficient FFT algorithm
and pipeline implementation results for OFDM/DMT
applications,” IEEE Transactions on Consumer Electronics,
vol. 49, no. 1, pp. 14-20, Feb. 2003.

[12] M. Hasan, T.Arslan, and J.S. Thompson, “A novel coefficient
ordering based low power pipelined radix-4 FFT processor for
wireless LAN applications,” IEEE Transactions on Consumer
Electronics, vol. 49, no. 1, pp. 128-134, Feb. 2003.

[13] S. He and M. Torkelson, “Designing Pipeline FFT Processor
for OFDM (de)Modulation,” in Proc. URSI Int. Sym. Signals,
Systems, and Electronics, vol. 29, Oct.1998, pp. 257-262.

[14] H.L. Groginsky and G.A. Works, “A pipeline fast Fourier
transform,” IEEE Transactions on Computers, vol. C-19, no.
11, pp. 1015-1019, Nov. 1970.

[15] Y.T. Lin, P.Y. Tsai and T.D. Chiueh, “Low-power variable-
length fast Fourier transform processor,” IEE Proc. Comput.
Digit. Tech., vol. 152, no. 4, pp. 499-506, July 2005.

[16] K. J. Cho, K. C. Lee, J. G. Chung, and K. K. Parhi, “Design of
low-error fixed-width modified Booth multiplier,” IEEE Trans.
Very Large Scale Integration Systems, vol. 12, no. 5, pp. 522–
531, May 2004.

